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A theory is developed to describe the kinematic diffraction response of a crystal

when it is subjected to a periodically varying external perturbation. It is shown

that if a part of the local electron density varies linearly with an external

stimulus, the diffracted signal is not only a function of the stimulation frequency

�, but also of its double 2�. These frequency components can provide, under

certain conditions, selective access to partial diffraction contributions that are

normally summed up in the interference pattern. A phasing process applied to

partial diffraction terms would allow recovery of the substructure actively

responding to the stimulus. Two ways of frequency filtering are discussed

(demodulation and correlation) with respect to extracting information from

such an experiment. Also considered is the effect of the variation of different

structural parameters on the diffraction intensity that have to be accounted for

while planning modulation-enhanced experiments. Finally, the advantages and

limitations of the proposed concept are discussed, together with possible

experiments.

1. Introduction

Periodic stimuli applied to a crystal have been used to study

the effects of dynamic scattering by ultrasonic modulation

(Punegov et al., 2010; Remhof et al., 1997), or to study kinetics

via pump–probe experiments (Techert et al., 2001). Here we

consider the kinematic diffraction response to a periodic

perturbation of a crystal where only a subset of the atoms

(active atoms) is periodically changing its properties. We also

analyse the possible implications for diffraction in general.

This idealized case may provide a general model for many

processes where the scattering power of a certain constituent

of the crystal structure can be periodically modified by an

external stimulus. Adsorption/desorption in framework

materials, reversible ion intercalation in organic/inorganic

matrices for battery applications, and polarization- or

magnetization-induced displacements by electric or magnetic

fields in a multiferroic may serve as examples.

Modulation techniques have been successfully applied in

spectroscopy (Urakawa et al., 2008) and recently they have

also been adopted for powder diffraction (van Beek et al.,

2010). First diffraction data sets collected in modulation mode

have just been reported (Urakawa et al., 2011), but there is still

no clear understanding of what kind of information can be

safely extracted from such an experiment. A general theory of

the modulation approach applied to diffraction is not yet

available and this makes further experiments and their

analysis difficult. The formulation of the corresponding theo-

retical background is the main goal of this paper.

X-ray diffraction has become, after 100 years of develop-

ment, a very successful experimental tool for structural char-

acterization of condensed matter. There are, however, a few

fundamental limitations of this technique that we want to

discuss with respect to the modulation approach. Diffraction is

an interference phenomenon and the intensity on a detector

does not allow one to separate contributions from different

atomic subsets; for neutron diffraction this is possible, but only

for a very limited number of isotopes (Trunov et al., 1991;

Herren et al., 1980). The very same interference nature also

does not permit a direct measurement of the phase of the

diffracted waves, and this problem is sometimes called ‘the

phase problem of crystallography’. Here we show that in some

cases these two fundamental crystallographic problems can be

solved, or at least greatly reduced, with the help of the

modulation-enhanced diffraction (MED) technique.

The text is organized as follows. First, we give an intro-

duction to the theory of MED. Second, we derive the periodic

diffraction response for the case when only one subset of

atoms in a multi-atomic structure is responding to an external

periodic stimulus. Then we consider a general case of corre-

lation between the periodic diffraction response and the

external stimulus. Finally, we discuss new options and limita-
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tions imposed by the MED technique, together with possible

practical applications of the modulation approach.

2. Basics of modulation-enhanced diffraction

In MED (see the generic scheme in Fig. 1) diffraction data are

collected as a function of time [I(t, 2�)], while a periodic

external stimulus [S(t)] with period T ¼ 2�=� is also

recorded, � being the frequency of modulation. The total time

of data collection covers many periods of modulation. The

diffraction response I(t, 2�), being correlated with a periodic

stimulus (a sine function in the simplest case), suppresses

background scattering and enhances the diffraction signal

conjugated with the modulated property. This is similar to

other modulation techniques, such as reverse time-of-flight

Fourier spectroscopy (Hiismaki, 1997) and modulated anom-

alous X-ray scattering proposed by Jemian et al. (1993).

If a crystal is subjected to an external stimulus alternating

with time, the electron density can be decomposed into

responding (active, ‘A’) and non-responding (silent, ‘S’)

components:

� r; tð Þ ¼ �S rð Þ þ �A r; tð Þ ¼ �S rð Þ þ �A rð Þ þ ��A r; tð Þ:

Here �A rð Þ is the time-averaged value of the electron density

of the active part and ��A r; tð Þ represents its variation with

time from the averaged value; we also assume the system to be

ergodic.

Let us now associate a subset of atoms in a multi-atomic

structure with the active contribution to the electron density.

We also assume here that the diffraction intensity is already

corrected for absorption, Lorentz and polarization, and

detector-specific aberrations. Such integrated intensity

measured at the Bragg node Q ¼ QHKL reads

IðtÞ ¼
PA

1

�j fj exp iQRj

� �
þ
PS

1

�j fj exp iQRj

� �����
����

2

¼ FAðtÞ þ FS

�� ��2 ¼ FA þ �FAðtÞ
� �

þ FS

�� ��2; ð1Þ

where A and S stand for actively responding and silent

substructures, respectively, and fj, Rj, �j indicate scattering

power (atomic form factor for X-ray or Fermi scattering

length for neutron diffraction), positional vector and occu-

pancy of the different atoms, respectively. The time-dependent

response of the active substructure (A) assumes that fj, Rj, �j

may all vary reproducibly with time to the external stimulus.

Different external stimuli will affect different components

in equation (1). For example, the temperature may induce

atomic displacements in the A substructure, thus changing Rj

and/or the Bj matrix describing the thermal motion (see x6.4).

Filling empty voids in a porous structure as a function of

temperature or pressure would mostly affect �j if the

temperature/pressure range is small so that the other para-

meters can be assumed constant, while the variation of the

energy of the incoming X-ray beam near an absorption edge

would change fj for the resonant atoms.

Since the structure factor F is a complex number, the

intensity may also be expressed in the following way:

IðtÞ ¼ FAðtÞ
�� ��2 þ FS

�� ��2 þ FAðtÞF
�
S þ F�AðtÞFS; ð2aÞ

where * stands for complex conjugate. After separating time-

dependent and -independent terms, equation (1) reads

IðtÞ ¼ FA þ FS

�� ��2 þ �FAðtÞ
�� ��2 þ �F�AðtÞ FA þ FS

� �
þ �FAðtÞ F�A þ F�S

� �
: ð2bÞ

The first term does not depend on the external stimulus, the

second corresponds to the diffraction response of the active

substructure and the last two terms represent the interference

between active and silent substructures.

The diffraction signals from different substructures, FS

�� ��2
and FA

�� ��2, cannot be measured separately, since the inter-

ference factor FSF�AðtÞ þ F�S FAðtÞ is an unknown part of the

measured intensity. With MED this problem may be overcome

by Fourier transforming the diffraction intensity from time to

frequency domain, thus leaving only the time-dependent

terms and suppressing the time-independent contributions:

~II !ð Þ ¼ FT �FAðtÞ
�� ��2h i

þ FA þ FS

� �
FT �F�AðtÞ
� �

þ F�A þ F�S
� �

FT �FAðtÞ
� �

; ð3Þ

where

FT f tð Þ½ � ¼
RT
0

f tð Þ exp i!tð Þ dt:

Equation (3) suggests a way of separating the different

contributions. By analysing the frequency response one could

separate the contributions from the interference term

�F�AðtÞ FA þ FS

� �
þ �FAðtÞ F�A þ F�S

� �
and from that of the

active substructure �FAðtÞ
�� ��2.

For the sake of illustration, let us consider a straightforward

case. Equation (3) becomes very simple if we assume a cosine-

shaped stimulus and a proportional response: �FA tð Þ ¼

�F�A tð Þ / S tð Þ ¼ A cos �tð Þ. Here A is the amplitude of the

external stimulus.

Under these assumptions equation (3) reads
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Figure 1
A scheme of the modulation-enhanced diffraction experiment. The
incoming X-ray beam is diffracted by a crystal, which is subjected to an
external periodic perturbation S(t). Sinusoidal, square and triangular
waves are shown as examples of possible trends of the external stimuli.



~II !ð Þ / ð�A2=2Þ � !ð Þ þ � !� 2�ð Þ þ � !þ 2�ð Þ½ �

þ 2�A Re FA

� �
þ Re FS

� �� �
� !��ð Þ þ � !þ�ð Þ½ �:

This simple derivation illustrates a very important property of

the frequency spectrum of the modulated diffraction signal:

perturbing a component of the crystal with frequency � by

modulating the scattering factor, the diffraction signal

responds with two frequencies, � and 2�. By extracting the

different frequency components one could, therefore, at least

for the case considered, separate different contributions

normally merged into one diffracted intensity.

Thus, having shown the main idea of using modulation in

diffraction techniques, we will formulate a general theory for

an arbitrary periodic stimulus and response, derive the

analytical tools and methods to extract structural information,

and also enumerate the limitations to be accounted for in a

real experiment.

3. Stimulus and response expressed as Fourier series

Both S(t) and �FAðtÞ may be much more complex than a

simple cosine function but, as long as they are periodic, they

can always be expressed as Fourier series:

�S!ðtÞ ¼ SðtÞ � SðtÞ ¼ S0

P1
�1

pr exp ir!tð Þ

�F!
AðtÞ ¼ F0

P1
�1

q̂qr exp ir!tð Þ ð4aÞ

with

pr ¼
1

S0T

ZT

0

�S!ðtÞ exp ir!tð Þ dt

q̂qr ¼
1

F0T

ZT

0

�F!
AðtÞ exp ir!tð Þ dt:

ð4bÞ

Here F0 and S0 are the amplitudes of the response and the

stimulation, respectively, and F0 corresponds to the active

substructure, r stands for integers and the superscript !
highlights that our expressions depend parametrically on

frequency. �S!ðtÞ is set to be symmetric with respect to t = 0, so

that pr are real numbers and pr ¼ p�r; this condition can be

easily realized for many external perturbations. Note that

q0 ¼ p0 ¼ f0 ¼ 0 since �F!
AðtÞ ¼ �S

!ðtÞ ¼ 0. For �F!
AðtÞ one

also has to account for a possible time delay of response with

respect to stimulus:

�F!
AðtÞ ¼ F0

P1
�1

qr exp ir!tð Þ expðir!�AÞ ð4cÞ

where �A denotes the corresponding time delay and

qr exp ir!�Að Þ ¼ q̂qr. �F!AðtÞ is symmetric with respect to

t ¼ ��A and therefore qr ¼ q�r.

It is also useful to derive the corresponding expansion for

�F!AðtÞ
�� ��2,

�F!AðtÞ
�� ��2 ¼ F0

�� ��2P1
�1

P1
�1

qrqn exp i!�A rþ nð Þ
� �

� exp i!t rþ nð Þ½ �: ð4dÞ

Now we introduce an important assumption that could be

tentatively called ‘linear response’. By doing so we imply that

only the first linear term is considered in the following Taylor

series and the contributions from the higher terms are negli-

gible:

�FA ¼
@FA

@S
�Sþ

@2FA

@S2
�Sð Þ2 þ . . . :

Here �FA is the variation of the structure amplitude of the

active substructure, �S is the variation of the external stimulus

and the derivative @FA=@S is considered as a constant. It

immediately follows that for such a linear response qr / pr; in

other words, if the stimulus function consists of only odd

harmonics such as sinusoidal-, square- and triangle-wave

shapes (Fig. 1), the response does not contain any components

at even harmonics. Concerning equation (4d), r and n are both

odd, as occurred in the simple example considered in the

previous section. This result is general and does not depend on

the shape of the stimulus, as long as it can be expressed in a

Fourier series and the linear response hypothesis holds, which

is typically valid when �S is sufficiently small.

4. Separating out contributions summed into
diffraction intensity

We start from a scheme very similar to the one used in spec-

troscopy (Urakawa et al., 2008), based on the calculation of

the following integrals by introducing a new variable �,
resulting in the conversion of IðtÞ to Ið!; �Þ:

I !; �ð Þ ¼
RTexp

0

dt IðtÞ exp i! t � �ð Þ½ �

¼
RT exp

0

dt �FA

�� ��2 exp i! t � �ð Þ½ �

þ A
RT exp

0

dt �FA exp i! t � �ð Þ½ �

þ A�
RT exp

0

dt �F�A exp i! t � �ð Þ½ � ð5Þ

with A ¼ FA þ FS

� �
; Texp denotes the time taken by the

experiment, which is assumed to be much longer than the

period T of the stimulus, and many experimental data sets are

collected during each period. Assuming that equation (4c)

holds for �FA, the result only contains the cross-terms related

to A and A*, and reads

I !; �ð Þ ¼ q1F0 A exp i! �A þ �ð Þ
� �

þ A� exp �i! �A þ �ð Þ
� �� �

:

ð6Þ

Here we recall that
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ZT exp

0

dt exp i! ðrþ 1Þt½ �
	 


¼
1! ðrþ 1Þ ¼ 0

0! ðrþ 1Þ 6¼ 0
:

�

Note that the first integral containing �FA

�� ��2 in equation (5)

goes to zero; however the corresponding term takes non-zero

values after the following double frequency transformation:

I 2!; �ð Þ ¼
RTexp

0

dt IðtÞ exp i2! t � �ð Þ½ �

¼
RT exp

0

dt �FA

�� ��2 exp i2! t � �ð Þ½ �

þ A
RT exp

0

dt �FA exp i2! t � �ð Þ½ �

þ A�
RT exp

0

dt �F�A exp i2! t � �ð Þ½ �; ð7Þ

I 2!; �ð Þ ¼ F0

�� ��2P1
�1

qnqnþ2 exp �i2! �A þ �ð Þ
� �

: ð8Þ

Higher-frequency terms I N!; �ð Þ, N> 2 can be similarly

derived but they are assumed minor and negligible because of

the lower amplitude of high-frequency terms contained in the

stimulus and thus have no practical use for the separation of

partial diffraction contributions.

For a fixed frequency of modulation ! ¼ �, I �; �ð Þ and

I 2�; �ð Þ could therefore be used to separate �FA

�� ��2 and �FA

contributions from time-dependent modulated diffraction

data. It is important to realize that in the linear response case

the 2� component only represents the active substructure

signal, provided that no even frequency terms are present in

the stimulus. For example, with a sinusoidal-wave stimulus of a

frequency �, under the linear-response assumption the active

substructure signal appears exclusively at 2� frequency. We

call the calculation of integrals [equations (5) and (7)]

‘demodulation’ to distinguish it from the ‘correlation’ proce-

dure described in the next section. The ‘demodulated’ inten-

sity as a function of � is a wave with period 2�=� and phase

��A. The range 0 � � � T ¼ 2�=� defines the irreducible

part of the phase space.

5. Correlation of stimulus and response

Equations (5) and (7) are particular cases of a convolution

integral correlating the exponential function with diffraction

intensity. Let us now consider a convolution of the diffraction

response I tð Þ with a periodic external stimulus S(t), taking

both functions in the general form of the corresponding

Fourier series:

I; �Sh i
!
� ¼

RT exp

0

dt

�
FA þ FS

�� ��2þ �FAðtÞ
�� ��2þ�F�AðtÞ FA þ FS

� �

þ �FAðtÞ F�A þ F�S
� �


�Sðt � �Þ

¼ �FA

�� ��2; �SD E
�
þ �FA; �S
� �

A� þ �F�A; �S
� �

A: ð9Þ

Using equation (4a), one derives

h�FA; �Si
!
¼
RTexp

0

�F!
AðtÞ�S

!ðt � �Þ dt

¼ F0S0

P1
�1

prq�r

	
A exp ir! �A þ �ð Þ

� �
þ A� exp �ir! �A þ �ð Þ

� �

: ð10Þ

If we also select �S!ðtÞ ¼ S0

P1
�1 pr exp ir!tð Þ to be such that

only odd harmonics are non-zero, then, according to equation

(6), the interference terms would not contribute to the total

response at 2�.

Now we could apply the same approach used to calculate

the first term in equation (5), and derive the convolution of the

modulated diffraction intensity from the active substructure

with the external modulation, h �FA

�� ��2; �Si:
�FA

�� ��2; S
D E!

¼
RTexp

0

�F!
AðtÞ

�� ��2S!ðt � �Þ dt

¼ F2
0 S0

P1
�1

P1
�1

P1
�1

qrqnpm exp i! �m� þ rþ nð Þ�A

� �	 


�
RTexp

0

exp i rþmþ nð Þ!t½ � dt

¼ F2
0 S0

P1
�1

P1
�1

qrqnp� nþrð Þ exp i! �A þ �ð Þ rþ nð Þ
� �	 


:

ð11Þ

There are contributions like qnqnp�2n exp½i2n! �A þ �ð Þ� which

are zero for the selected S!ðtÞ. If, as before, we assume a linear

response of the active substructure, implying also odd r and n,

the entire term h �FA

�� ��2; Si! remains zero.

The final form of the correlated diffraction intensity

therefore contains only cross-terms and reads

I; Sh i
!
� ¼ F0S0

P1
�1

prq�r

	
A exp ir! �A þ �ð Þ

� �
þ A� exp �ir! �A þ �ð Þ

� �

: ð12Þ

At variance with the demodulated intensity [equation (6)], its

correlated analogue [equation (12)] does not give a wave but a

sum of many waves with frequencies r! and intensities

proportional to prqr.

Similarly to the demodulated form, the convolution of the

diffracted intensity with S2!ðt � �Þ, i.e. with an external

perturbation taken at doubled frequency, does not contain a

contribution from the interference term and only represents

the active substructure:

�FA

�� ��2; S
D E2!

¼ F0

�� ��2S0

P1
�1

P1
�1

qrqnp� nþrð Þ=2

� exp i! �A þ �ð Þ rþ nð Þ
� �	 


: ð13Þ

The correlation approach offers an important advantage that

has been implemented before in a specific neutron time-of-

flight technique – namely the reverse time-of-flight (RTOF)

method (Hiismaki, 1997). If one varies the modulation

frequency during an experiment from zero to �max such that

the time during which the system stays at a certain frequency
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�n is proportional to a weight function g �nð Þ that obeys the

normalization condition

R�max

0

d! g !ð Þ ¼ 1; ð14Þ

then integration of equation (12) over frequency using the

weight function g !ð Þ results in

I; Sh i� ¼
R�max

0

I; Sh i
!
� g !ð Þ d!

¼ F0S0

P1
�1

prq�r AR r �A þ �ð Þ
� �

þ A�R� r �A þ �ð Þ
� �	 


R r �A þ �ð Þ
� �

¼
R�max

0

d! g r!ð Þ exp ir! �A þ �ð Þ
� �

R� r �A þ �ð Þ
� �

¼
R�max

0

d! g r!ð Þ exp �ir! �A þ �ð Þ
� �

: ð15Þ

If g !ð Þ is now also chosen such that its Fourier transform is a

sharp peak, then all the information in the phase space (�) is

condensed in a peak centred at �A. R r�ð Þ may now be

considered as an instrumental resolution function in phase

space. A schematic illustration of a few frequency windows

and corresponding resolution functions is shown in Fig. 2. For

simple frequency windows like Gaussian or Dirichlet, the

width of the resolution function is inversely proportional to

the maximal frequency (Hiismaki, 1997). Integration of the

peak profile is now a measure of F0 for a given Bragg reflec-

tion.

Integrating equation (13) over frequency gives

�FA

�� ��2; S
D E

¼
R�max

0

I; Sh i
2!
� g !ð Þ d!

¼ F0

�� ��2S0

P1
�1

P1
�1

qrqnp�ðnþrÞ=2R �A þ �ð Þ rþ nð Þ
� �

:

ð16Þ

The area of the corresponding peak would give an estimate of

F0

�� ��2. In other words, the shape of g !ð Þ together with the

maximum modulation frequency allows us to gain control over

the shape and width of the peak in the phase space in close

similarity with neutron diffraction (Kudryashev et al., 1999).

At variance with the demodulation approach, where the

filtered signal is periodically distributed in phase space, the

convolution condenses information in a peak that may be used

to increase accuracy.

6. Modulation of structural parameters and diffraction
response

In the above sections we have formulated the basic hypothesis

and two ways of obtaining structural information from

modulated data. Here we discuss some intrinsic limitations of

the modulation technique that have to be

accounted for while planning real experiments.

We restrict ourselves by considering the

electron density as the sum of all the electron

densities of the atoms or ions and neglecting

possible variations of the deformation density.

Fourier transformation of the electron density

is shown in equation (1).

Based on S!ðtÞ ¼ S0

P1
�1 pr exp ir!tð Þ as

the periodic external stimulus and on the

crystal structure as modelled by equation (1),

we consider all possible changes induced in the

diffraction signal by the stimulus affecting

active atoms. The four different cases are: (a)

occupancy of atomic positions, (b) atomic form

factor, (c) coordinates and (d) atomic displa-

cement parameters for active atoms.

6.1. The stimulus affects the occupancy of the
active atoms

Let us suppose that the occupancy of the

active atoms changes in time according to the

following law:

�j tð Þ ¼ �j þ ��j

P1
�1

qr exp ir! t þ �ð Þ½ �;

where the occupancy of site j varies between

�j þ ��j and �j � ��j. In this case the struc-

ture factor for the active atoms may be written

as
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Figure 2
Modulation frequency as a function of time (left), corresponding frequency window
(middle) and resolution function in phase space (right). Case (a) assumes constant
frequency of modulation, the demodulated or convoluted signal is a periodic wave in the
phase space; case (b) implies a linear variation of the modulation frequency with time thus
giving a Dirichlet frequency window together with a peaked but still oscillating signal
produced by convolution; case (c) illustrates a Gaussian frequency window and a well
defined peak in the phase space.



FA tð Þ ¼
PA

1

�j þ ��j

P1
�1

qr exp ir! t þ �ð Þ½ �

� �
fj exp iQRj

� �

¼
PA

1

�j fj exp iQRj

� �
þ
PA

1

��j fj exp iQRj

� �

�
P1
�1

qr exp ir! t þ �ð Þ½ �

¼ FA þ �FA tð Þ: ð17Þ

Therefore the total intensity can be written in the form of

equation (2b). For a single active sublattice �FA tð Þ ¼

ð��=�ÞFA

P1
�1 qr exp ir! t þ �ð Þ½ � and to have a linear

response, one has to make sure experimentally that qr / pr.

For this case one could apply both demodulation and convo-

lution techniques to recover ð��=�ÞFA and ð��=�ÞFA

�� ��2 for

odd and even frequencies, respectively. Note that these values

differ from FA and FA

�� ��2 by the scale factors ��=� and

��=�
�� ��2.

To give an idea of the possible magnitude of the demodu-

lated intensities, we consider the modulation of the occupancy

of lithium positions in LiCoO2 cathode material. The diffrac-

tion contribution from lithium is very weak with respect to the

scattering from cobalt and oxygen, and the Li content can be

varied electrochemically in a broad range (Laubach et al.,

2009). Taking the 113 Bragg reflection as an example, for an X-

ray wavelength of 0.65 Å, �� ¼ 0:25 and � ¼ 0:75 the

demodulated intensity ð��=�ÞFLi

�� ��2 could be extracted at the

level of 0.2% from the total; for a complete removal and

insertion of the intercalated lithium this value takes its

maximal value of �2%. In spite of the smallness of the

extracted values, the demodulated intensities after scaling are

the same as those in the diffraction pattern calculated for the

active Li sublattice alone. As an illustration, we have carried

out a simple simulation of a MED experiment with a sinu-

soidal modulation of Li occupancy, assuming linear response

and zero time delay. A total of 60 powder patterns of LixCoO2,

with x = 0.3–0.5, have been calculated with the help of the

TOPAS software and Fig. 3(a) illustrates the time evolution of

the diffraction pattern. For the sake of simplicity we have

neglected the variation of the unit-cell dimensions and oxygen

displacement, since they are expected to be small (Laubach et

al., 2009). The comparison of the Li contribution with the total

intensity from LixCoO2 is illustrated in Fig. 3(b). The extrac-

tion of the demodulated diffraction intensities at 2� has been

carried out with a locally developed script calculating the

integral in equation (7) with � ¼ 0 and the comparison with

the diffraction pattern of the Li sublattice alone is shown in

Fig. 3(c); the patterns are the same as expected.

6.2. The stimulus affects the scattering factor of the active
atoms

Let us suppose that the scattering factors of some atoms of

the crystal structure change in time according to the following

law:

fj tð Þ ¼ fj þ �fj

P1
�1

qr exp ir! t þ �ð Þ½ �

where the atomic scattering factor varies between f þ �f and

f � �f . This could be obtained by modulating either the

oxidation state of the ith atom or the wavelength of the X-ray

beam. In the latter case, if the wavelength induces resonant

scattering effects, the scattering factor changes in time

according to the law
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Figure 3
(a) Time evolution of the diffraction pattern of LiCoO2 induced by a
sinusoidal modulation of Li occupancy. (b) Simulated diffraction from Li
atoms only (red) (i.e. a structural analogue of LiCoO2 with occupancy of
Co and O set to zero) compared with the total diffraction from LiCoO2

(black). (c) Simulated (red) and demodulated (black) powder patterns of
the Li sublattice, normalized to the same scale.



fj tð Þ ¼ fj þ �f 0j þ i�f 00j
� � P1

�1

qr exp ir! t þ �ð Þ½ �; ð18Þ

where �f 0j and �f 00j are the variations of the real and imaginary

dispersion corrections for the jth atom, respectively. The

structure factor for the active atoms may then be written as

FA tð Þ ¼
PA

1

�j f j exp iQRj

� �
þ
PA

1

�j �f
0
j þ i�f 00j

� �

� exp iQRj

� � P1
�1

qr exp ir! t þ �ð Þ½ �

¼ FA þ �FA tð Þ:

When an active sublattice is present and a linear response is

assumed, both demodulation and convolution techniques

would recover ½ð�f 0 þ i�f 00Þ=f �FA and ½ð�f 0 þ i�f 00Þ=f �FA

�� ��2 for

odd and even frequencies, respectively. Note that, at variance

with occupancy modulation, such values are not simply

proportional to FA and FA

�� ��2 but differ in Q dependence.

Taking again LiCoO2 as an example (Laubach et al., 2009) and

varying the X-ray wavelength between 0.4 and 0.7 Å, one finds

that the demodulated intensity from the Co sublattice repre-

sents �0.17% of the total intensity for the 113 reflection.

6.3. The stimulus affects the position of the active atoms

Let us suppose that the position of active atoms changes in

time according to the following law:

Rj tð Þ ¼ Rj þ �Rj

P1
�1

qr exp ir! t þ �ð Þ½ �;

where Rj is the average position of the atom j, and �Rj defines

the direction and amplitude of the atomic displacement. In

this case the structure factor for active atoms is

FA tð Þ

¼
PA

1

�j fj exp iQRj

� �
exp iQ�Rj

P1
�1

qr exp ir! t þ �ð Þ½ �

� �� �
:

ð19aÞ

For small displacements Q�Rj

P1
�1 qr exp ir! t þ �ð Þ½ � is also

small and series expansion for the corresponding exponent

gives

exp iQ�Rj

P1
�1

qr exp ir! t þ �ð Þ½ �

� �

’ 1þ iQ�Rj

P1
�1

qr exp ir! t þ �ð Þ½ �

�
1

2
Q�Rj

P1
�1

qr exp ir! t þ �ð Þ½ �

� �2

þ . . . : ð19bÞ

Keeping only the two first terms we obtain an approximation

of the structure amplitude,

FA tð Þ ’
PA

1

�j fj exp iQRj

� �
1þ iQ�Rj

P1
�1

qr exp ir! t þ �ð Þ½ �

� �

¼ FA þ �FA tð Þ:

To have a valid linear response, for the variation

�FA tð Þ ¼
P1
�1

qr exp ir! t þ �ð Þ½ � iQ
PA

1

�j fj�Rj exp iQRj

� �

one again has to make sure that qr / pr. If we additionally

assume that all the active atoms move coherently in the

same direction (translation movement), then �FA tð Þ ¼

iFAQ�R
P1
�1 qr exp ir! t þ �ð Þ½ �. For this particular case one

could apply both demodulation and convolution techniques to

recover FAQ�R and FAQ�R
�� ��2 for odd and even frequencies,

respectively.

If the assumption of small atomic shifts does not hold, one

would not be able to separate squared and cross-terms

[equation (2b)] on the sole basis of their frequency response.

Thus, also for a linear response of the atomic shifts [equation

(19a)], the response at the level of structure amplitude and

diffraction intensity is in general nonlinear as a result of the

nonlinearity of the exponential function.

6.4. The stimulus affects the atomic displacement parameters
(ADPs) of the active atoms

Smearing of atomic positions due to thermal motion and/or

static structural distortions is conveniently modelled by a

tensor of atomic displacement parameters (Trueblood et al.,

1996). Here we consider the modulation effect in an isotropic

approximation, thus treating only the trace of the ADP matrix;

a more detailed consideration assumes similar treatment

applied to all the elements of the ADP matrix.

Let us suppose that the isotropic ADP is modulated by the

following law:

Bj tð Þ ¼ Bj0 þ �B0

P1
�1

qr exp ir! t þ �ð Þ½ �:

Then the structure factor for the active atoms may be written:

FA tð Þ ¼
PA

1

�j f 0
j exp

�
�

�
Bj þ �B0

P1
�1

qr exp ir! t þ �ð Þ½ �

�
Qj j2

�

� exp iQRj

� �
; ð20aÞ

where f 0
j is the atomic scattering factor for the atom without

thermal motion. Provided that �Bj tð Þ Qj j2 	 1 the above

expression can be simplified:

FA tð Þ ¼
PA

1

�j f 0
j exp �Bj Qj j2

� �
exp iQRj

� �

� exp ��B0

P1
�1

qr exp ir! t þ �ð Þ½ �

� �
Qj j2

� �

’
PA

1

�j f 0
j exp �Bj Qj j2

� �
exp iQRj

� �

� 1� �B0

P1
�1

qr exp ir! t þ �ð Þ½ �

� �
Qj j2þ . . .

� �

¼ FA þ �FA tð Þ: ð20bÞ

The linear response of the isotropic B factor can be antici-

pated for a temperature region where Bj tð Þ / kBT tð Þ, but the

diffraction response �FA tð Þ will stay linear only for small

variations of Bj tð Þ.
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7. Discussion – advantages and pitfalls of the MED
technique

While the application of the MED method is limited with

respect to normal diffraction, this approach opens up new

opportunities compared to traditional experiments. The

problems to be studied with MED may be broadly split into

two, which we shall refer to here as direct and inverse.

The direct problem of MED may be formulated as a

recovery of structural information from modulated diffraction

intensity. The problem can be solved assuming or designing an

experiment such that a subset of the atoms responds and the

response is described by a linear function in terms of structure

amplitudes, which is also typically achieved by decreasing the

amplitude of the stimulus.

Jemian et al. (1993) presented the theory and a simulated

study on modulated anomalous X-ray scattering for a liquid

solution. We have shown here that demodulated and corre-

lated diffraction intensities calculated at odd and even

frequencies separately represent contributions from different

terms summed up in the normal diffraction intensity. This

conclusion contradicts the conjecture of Jemian et al. (1993)

that all frequency components other than the modulation

frequency do not need to be taken into account. Combining

periodic external modulations with demodulation or correla-

tion procedures allows one to separate the interference term

information from both silent and active atoms from the

diffraction contribution of the active substructure; this is not

possible for standard diffraction experiments. This statement

has, however, to be taken with a grain of salt – the information

we could extract is limited to a set of Fourier coefficients qn;

their number and the accuracy of each of them would define

the quality of �F!
AðtÞ

�� �� and �F!AðtÞ
�� ��2.

The information derived from the demodulation procedure,

e.g. I !; �ð Þ, is a wave in the � space, and structural information

is proportional to the amplitude of the wave. It could be

difficult to extract structural information using the demodu-

lation procedure where the information is spread in a wave in

phase space. In contrast, the convolution procedure may

provide a more accurate measure for the structural informa-

tion together with the delay of the structural response, �A. To

do so, the convolution procedure has to be combined with

proper frequency windowing; Gaussian-shaped windows may

be taken as an example, providing a sharp �-like resolution

function in the phase space. The peak is centred at �A, its

intensity is a measure of the structural information and its

width is a function of the maximum modulation frequency, but

also contains information on the spread of the delay in the

structural response.

The diffraction intensity extracted at double frequency

can be used for solving the structure of the active sublattice

using the same algorithms developed so far for normal

diffraction experiments. However, access to the interference

term via demodulation at single frequency may be used for

developing new phasing tools. Further discussion of the

application of MED data for structure solution will be

reported elsewhere.

However MED is not limited to the solution of the phase

problem but may also serve to characterize the kinetics of a

process induced by the stimulus. We define the inverse

problem of MED as the recovery of time evolution of a

structural response through frequency analysis of the

diffracted intensity. Such a recovery assumes that the struc-

tural changes induced by the external periodic modulation are

known. The procedure may be considered as the calculation of

the Fourier coefficients, q̂qr, followed by reconstruction of the

time evolution of the crystal structure. The inverse problem

therefore deals with a structural response that is not neces-

sarily linear; this approach may be of interest with respect to

kinetic and in situ studies of non-equilibrium systems.

Until now we have only discussed diffraction intensities,

but the diffraction experiment also provides information

on the position of Bragg reflections and therefore on unit-cell

dimensions. Note that lattice deformations and changes of

atomic positions may be very different at certain timescales, as

recently shown for an electric field acting on a piezoelectric

crystal (Gorfman et al., 2010). However, slow adiabatic

variation of unit-cell dimensions may be considered as char-

acteristic for the equilibrium state. Cell dimensions, at

variance with intensities, are linearly proportional to atomic

shifts and may, therefore, serve as an independent test of the

linearity of the structural response.

The position of Bragg reflections may also be correlated

with Bragg intensities and the external stimulus. Such an

internal linearity test approach, as well as combination of

different experimental probes, needs to be further developed

and should be based on a detailed analysis of the physical

processes involved in the stimulus.

8. Conclusions

When an external stimulus is applied to a crystal, its structure

may respond and this response is commonly studied by

diffraction techniques. We have formulated the necessary

theoretical basis for the modulation-enhanced technique when

a periodically varying stimulus is applied. We have shown that

with the help of this technique one may selectively extract

partial diffraction intensities. This option has already been

realized in the case of neutron diffraction and for a limited

number of isotopes, but it is lacking in the case of X-rays. We

propose two methods – demodulation of diffracted intensity

and its convolution with an external modulation – to facilitate

the extraction of the necessary information from the diffrac-

tion signal. The theoretical description assumes that the

inverse problem could also be addressed to allow recovery of

the time response when the structural changes are known.

Taking into account the four possible ways to affect struc-

tural parameters and the respective response in terms of

diffracted intensities, we would like to conclude this theore-

tical work with some comments on possible experiments. On

the one hand, some external perturbations, like temperature,

may trigger a variety of processes affecting the structure:

partial gas pressure and concentration variations in a multi-

component mixture, chemical reactions, and structural phase
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transitions, to mention a few. A complex structural response

has therefore to be decomposed into a set of coupled

processes where coupling is a function of microscopic

mechanisms involved in the structural evolution. On the other

hand, some of the external variations, such as the energy of the

incoming X-ray beam for a structure containing resonant

atoms, may be considered as a ‘safe’ stimulus selectively

addressing a certain set of atoms and providing linear

response. The other, almost ideal, external modulation is a

magnetic field combined with neutron diffraction on a

compound in which the magnetic structure could be altered by

a periodic perturbation. Resonant diffraction with X-rays and

modulated magnetic neutron diffraction could therefore be

considered as good candidates to test the proposed theoretical

schemes for the solution of the direct problem.

Finally, we have shown here only the first step towards the

theory of modulation effects in kinematic diffraction, which

could also be expanded to dynamic scattering and diffuse

scattering problems related to thermal or static structural

disorder. This paper describes the basic ideas and formulas of

the general MED theory. Forthcoming theoretical steps should

deal with simulated experiments, error analysis, and applica-

tions to solve the phase problem and to perform kinetic

analyses. Recommendations on the required statistics and

sampling have also to be worked out for the test diffraction

experiments.

DC would like to thank his daughter, Elizaveta Cherny-

shova, for checking some of the derivations.
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